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Modeling Water Erosion Due to Overland Flow Using Physical Principles 
1. Sheet Flow 

P. B. HAIRSINE 1 AND C. W. Rose 

Division of Australian Environmental Studies, Griffith University, Brisbane, Queensland, Australia 

A new model for erosion of plane soil surfaces by water is developed using physical principles. 
Raindrop impact and overland flow remove soil from the original cohesive soil. Once eroded soil enters 
overland flow, either as aggregates or primary particles, a significant proportion of it returns to the soil 
bed, forming a cohesionless deposited layer from which it can be removed again by the same erosion 
processes. The action of the eroding agents will be divided between eroding the unshielded original 
cohesive soil and reintroducing sediment from the deposited layer. The theory recognizes that the 
nature of the surface is modified by the erosion and deposition processes affecting it. Solutions of the 
governing differential equations describing sediment concentration are developed for two distinct 
equilibrium cases. The first case, when the deposited layer completely shields the original soil, appears 
to correspond with what has been previously called a "transport-limited" situation. The second case 
occurs when such shielding is incomplete, and sediment concentration is affected by the cohesive 
strength of the soil. The resulting equations for sediment concentration at equilibrium are compared 
with existing equations. Firstly, the equation for the case where the soil is lacking cohesion is shown 
to be similar to the semiempirical equation of Yang (1973). Secondly, when the soil is cohesive the 
slope length relationships are shown to be in good agreement with the universal soil loss equation over 
a wide range of slope steepness. 

INTRODUCTION 

It has been widely supposed that the soil erosion pro- 
cesses occurring during overland flow are very similar to 
those occurring during streambed erosion. This has led to 
the use of sediment transport equations derived for deep 
flow conditions to describe the movement of sediment in the 
relatively shallow flows characteristic of soil erosion on a 
field scale. However, there are differences between these 
two scales in both the sedimentary mateddais and the pro- 
cesses at work. Firstly, the sediment which is being acted 
upon at the field scale is generally cohesive, having both 
interaggregate and interparticle strength in situ. Secondly, 
soils are commonly composed of a wide range of aggregate 
and particle sizes. Finally, the shallow surface flows which 
occur at field scales are influenced by the impact of raindrops 
on both the shallow water layer and the exposed soil surface. 
In contrast, streambed erosion is characterized by well- 
sorted cohesionless sediment which is carried in relatively 
deep flows uninfluenced by raindrop impact. 

The influence of soil physical properties on the erosion 
process has been recognized through the concept of soil 
"erodibility," which is reflected in the ratio of actual sedi- 
ment flux to the sediment flux expected for cohesionless 
single-sized sediment. It has long been recognized that there 
are three distinct phases in the movement of a sedimentary 
unit from one point to another: detachment, transport and 
deposition. Clearly, only initial removal is dependent upon 
the cohesive resistance of the original soil. Foster and Meyer 
[1975] introduced two terms, "detachment limiting" and 
"transport limiting," to describe sediment flux when either 
the resistance to the original soil to release sediment, or the 
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ability of overland flow to move sediment are respectively 
considered limiting. Streambed sediment transport equa- 
tions have been employed to describe the transport-limiting 
case, and empirically derived erodibilities have been used 
for the detachment-limiting case. 

In this paper, two limiting cases are considered. First, the 
case when soil strength limits the sediment concentration is 
described by assuming that a certain amount of energy is 
required to remove a unit mass of cohesive soil (called the 
"specific energy of entrainment"). The second case consid- 
ered is the transport-limiting instance, where a cohesionless 
layer of deposited sediment completely shields the original 
soil surface. In both cases, some fraction (not all) of the 
stream power of overland flow is assumed to be consumed in 
removing sediment. The contribution of rainfall impact to 
sediment concentration has been considered separately 
[Hairsine and Rose, 1991] and while compatible with this 
approach, it is not considered in this paper. 

In this paper, overland flow is considered to be evenly 
distributed across the slope and behaves according to the 
approximate kinematic wave model proposed by Rose et al. 
[1983a]. In paper 2 [Hairsine and Rose, this issue], the 
influence of flow concentrations, such as rills, is considered 
and the resulting theory tested using experimental data 
obtained using simulated rainfall. 

FORMATION OF A DEPOSITED LAYER 

Whenever sediment with a positive immersed weight 
exists within a flow, all but the finer suspended sediment has 
a velocity component tending to move it downward under 
the action of gravity. A continuous deposition process 
results which may be described [Croley, 1982] by the expres- 
sion 

d i = ot i7.,ici, (1) 

where i refers to a general settling velocity or size class, d i 
is the mass rate of deposition per unit area of that class, 
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Fig. 1. Flow diagram of the use of the potential energy of the excess rainfall and the soil mass itself, with sources on 
the left and sinks on the right. 

(O•iCi) is the sediment concentration adjacent to the bed, c i 
is the mean sediment concentration (mass of sediment per 
unit volume of solution), and vi is the settling velocity 
representative of class i. Note that the term ot i is introduced 
to permit a nonuniform vertical distribution of sediment in 
the flow. This term does not need to be evaluated for 

sediment transport at equilibrium as will be shown below. 
Sediment returned to the bed is considered available for 

removal by the actions of overland flow (or raindrop impact). 
Thus, a dynamically changing deposited layer is conceived 
as being continuously added to by deposition and removed 
by "reentrainment." Both entrainment and reentrainment 
are due to the mutual shear stress between the surface and 

the flow, but reentrainment describes removal of sediment 
from the deposited layer. The relative extent of the depos- 
ited layer in protecting the underlying soil at any time is 
denoted by H, the fractional shielding of the original soil 
surface by the deposited layer. This fractional surface shield- 
ing could include a contribution by contact load developed 
by erosion, though this will not be dealt with explicitly. 
Fractional exposure of the original cohesive soil to entrain- 
ment is then (! - H). As the deposited layer is added to by 
deposition only, it is assumed it will be noncohesive. Thus it 
will be more readily removed than the original uneroded soil. 

PROCESS RATE EQUATIONS 

The rate of working of the mutual shear stress between the 
soil surface and overland flow was called the stream power 
(El) by Baghold [!966]. Stream power is the power per unit 
bed area available to do work. With the flow uniformly 
distributed across a plane of slope S, stream power is given 
by 

• = pgSq (2) 

where p is the water density; g, the acceleration due to 
gravity; and q, the water flux per unit width. Rose et al. 
[1983b] assumed a threshold stream power (f•0), below 
which no soil was entrained (the term used to describe 
removal of original soil by overland flow) or reentrained (the 
removal of sediment deposited in the current event by 
overland flow). 

Not all the excess stream power (f• - f•0) is used to erode 

soil; some is dissipated as heat and noise. Suppose fraction 
F of (f• - t2 0) is effective in entrainment or reentrainment. 
We then assume that stream power is applied uniformly to 
the total wetted perimeter of flow. However, where the 
deposited layer shields the original soil, stream power ap- 
plies only to the deposited layer. Thus, the rate of reentrain- 
ment is driven by the effective excess stream power, 
HF(f• - t10), and the rate of entrainment by the remaining 
effective excess stream power, (1 - H)F(f• - el0). The 
sources and sinks of stream power in overland flow are 
shown in Figure 1. Note that the dissipation of the potential 
energy of the soil itself has the potential to contribute to the 
rate at which soil is introduced to the flow. The contribution 

of head cut collapses and slumping of rill walls is described 
by the gravity process rate, rg i (kilograms per square meter 
per second). In the extreme case of land slips and mudflows, 
this process would dominate. However, on more moderate 
slopes, its role is limited to contributing sediment to the flow 
which then may be acted on by deposition and reentrain- 
ment. 

The Process of Sediment Entrainment 

Entrainment is the term adopted to describe the removal 
of sediment from the original cohesive soil mass or soil 
matrix by the action of overland flow. Any strength pos- 
sessed by this soil matrix will result in there being some 
resistance offered to such entrainment. Because entrainment 

is from the soil surface where there is negligible overburden 
pressure, any soil strength must be dominantly due to 
cohesion. Raudkivi and Tan [1984] showed experimentally 
that (for cohesive sediment) the effects of cohesion are far 
greater than that of the submerged weight of detached 
particles in inhibiting removal of soil. The resistance offered 
by the soil matrix to removal by fluid stresses exerted on it 
by overland flow is defined by the energy per unit mass of 
soil required to entrain it, J, which is called the specific 
energy of entrainment. 

Cohesive strength is a property of the soil matrix as a 
whole, not of individual particles. Thus, when cohesive 
strength is overcome in soil removal by entrainment, this 
process is assumed not to be size selective. If the original 
soil aggregates break down on wetting into a particular 
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distribution of size or settling velocity classes, then the 
process of entrainment is assumed not to change this distri- 
bution. This distribution, which was called a settling velocity 
distribution by Lovell and Rose [1988], is divided into I 
classes each of equal mass. The rate of entrainment (ri, 
kilograms per square meter per second) of any general size 
class i, will be equal for all I classes from the assumed 
nonspecificity with respect to size. The total rate of entrain- 
ment is then Ir i. Thus, the total rate of energy expenditure 
on entrainment is Iri J, which must be equal to the effective 
excess stream power available to sustain this process, given 
above as (1 - H)F(fl - fI0). It follows that 

F 

ri = (1 - H) •-• (D, - gl0) g• > D, 0 (3) 

x x+•x 

Fig. 2. Flow diagram (after the style of Forrester [1970]) de- 
scribing the interaction of erosion processes between the sediment 
flux, the original soil and the deposited layer. The process rates are 
entrainment, rei , reentrainment, rri , gravity processes, r#i, and 
deposition, d i. 

ri = 0 f• -< f•0. (4) 

No field test exists for direct measurement of the specific 
energy of entrainment, so that the value of J must be derived 
from erosion experiments. However, both the fall cone 
technique of Bradford and Grossman [1982] and the soil- 

. 

sheafing device of Sargunam et al. [!973] may provide 
measurements related to J. 

The Process of Sediment Reentrainment 

Reentrainment results from the action of overland flow on 

sediment deposited during the current erosion event on the 
soil surface. The cohesive strength of this recently deposited 
sediment is assumed to be insignificant, so that the force 
resisting removal by the flow depends solely on the im- 
mersed weight of sediment. The power expended in lifting 
the sediment to some height in the flow may therefore be 
assessed through the rate of change in potential energy of 
this sediment. Denote the rate of reentrainment (in mass per 
unit area of bed per second) by rri for sediment of size class 
i. Assuming the sediment density cr is the same for all size 
classes, its immersed weight is proportional to (or- p)/cr. An 
alternative description of the term ai introduced with (1) is 
that D/ai is the height through which sediment is lifted in 
reentrainment. Hence, the power required per unit area of 
bed to reentrain sediment of size class i to height D/ai is 
rrig(D/oti)(o'- p)/cr. 

This power may be equated to the power available for 
reentrainment, HF(I'• - D. 0). As with entrainment, reen- 
trainment is assumed to be nonselective with respect to 
sediment size of the source material, in this case the depos- 
ited layer. Therefore, the fraction of the total rate of reen- 
trainment for each size class is proportional to the mass 
fraction of that class in the deposited layer. This is given by 
Mdi/Mdt, where Mdi is the mass of sediment of class i in the 
deposited layer per unit area of bed, and M dt is the total 
mass of the deposited layer per unit area. Equating the 
expressions given above for the power requirement and 
power available per unit area for reentrainment, the expres- 
sion for the rate of reentrainment becomes 

rri .... 1) > D, 0 (5) 
•7 (o'- p) Mdt 

rri - 0 D, --< f•0. (6) 

The Processes of Rainfall Detachment and Rainfall 
Redetachment 

Hairsine and Rose [1991] distinguished between the pro- 
cesses of' rainfall detachment and rainfall redetachment. 

Both processes are driven by the impact of raindrops on the 
water-covered soil surface, detaching original cohesive soil 
and redetaching sediment from the deposited layer. The rate 
of sediment addition to the water layer by rainfall detach- 
ment and rainfall redetachment is reduced as flow depth 
increases [Proffitt et al., 1991] for water depths greater than 
about three drop diameters. These processes may be small 
contributors to sediment concentration compared with en- 
trainment and reentrainment. For analytical simplicity, the 
solutions developed below are for the case when flow depths 
are such that the contributions of these processes can be 
ignored. However, using numerical methods, solution of the 
differential equation describing conservation of mass of 
sediment with both rainfall- and runoff-driven processes can 
be obtained [Hairsine, 1988]. 

SEDIMENT CONCENTRATION AT EQUILIBRIUM 

Consider sediment transport on a plane land element with 
volumetric water flux per unit width q and depth of flow D. 
If rainfall detachment and redetachment rates are negligibly 
small, then from Figure 2, mass conservation of sediment in 
the general settling velocity class i requires that 

a(qci) a(ciD) 
•+•= r i+ rri + rg i-- d i, (7) Ox Ot 

where x is distance downslope and t is time. The flowchart in 
Figure 2 represents the four processes affecting sediment 
concentration and thus sediment flux. Equation (7) needs to 
be accompanied by a description of the hydrology of over- 
!and flow. Using the approximate analytic solution of Rose et 
al. [1983a] gives 

q = Qx, (8) 

where Q is the runoff rate per unit area, and using the 
kinematic flow approximation gives 

q = KD m . (9) 

Manning's and Chezy's equations are specific forms of (9) 
for turbulent flow. In Manning's equation, m = 5/3 and K = 
s l/2/n, where n is Manning's roughness coefficient. For 
Chezy's equation, m = 3/2 and K = CS 2/2 where C is 
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experimentally determined. For overland flow in the pres- 
ence of rainfall, it is expected that the character of the flow 
will be turbulent. For turbulent flows, Manning's equation 
will apply, with m approximately 5/3 [Overton and Mead- 
ows, 1976]. However, theory developed in this paper will use 
(9), permitting K and m to be chosen as desired. 

Mass conservation of sediment in the deposited layer 
alone (Figure 2) also requires that 

OMdi 
------= d i - rri. (10) 

Ot 

General solutions of (7)-(10) require description of the 
gravity process, rai, and use of numerical techniques. The 
solution presented below is restricted to equilibrium situa- 
tions when water depth, the mass of the deposited layer, and 
the concentration of each of the settling velocity classes do 
not change with time. That is, dynamic equilibrium is 
assumed where all variables are independent of time. Proffitt 
and Rose [1991] showed that for steady flow conditions a 
dynamic equilibrium was approached for both rain- and 
flow-driven erosion, and that equilibrium was associated 
with the settling velocity distribution of the eroded sediment 
approaching that of the original soil. This observation is 
consistent with the equilibrium solutions developed below. 

Equilibrium conditions yield simple analytical solutions 
which provide upper and lower limits to the sediment 
concentration. Furthermore, in erosion events where the 
above variables are not changing rapidly, it is possible that 
the use of equilibrium solutions in which input rates such as 
rainfall rate are allowed to adopt a sequential series of 
time-averaged values may well provide a solution of suffi- 
cient accuracy for events where change is not too rapid. 

After equilibrium has been achieved, the rate of reentrain- 
ment from, and deposition to the deposited layer, will be 
equal, so the mass of the deposited layer is constant (i.e., 
aM•i/Ot = 0, equation (10)). The shielding, H, of the 
original soil matrix by this deposited layer will be constant at 
equilibrium, and may be either complete (H = 1) or partial 
(H < 1). These two cases will be examined below. 

The Entrainment-Limiting Case (H < I) 

With H < 1 and the mass per unit area of the deposited 
layer steady, a constant fraction (1 - H) of the original soil 
is exposed to the erosive action of overland flow. From (10), 
with OMdi/Ot = 0, the processes of reentrainment and 
deposition are in equilibrium. If rainfall detachment and 
gravity processes are negligible, it then follows from Figure 
2 that only entrainment of the original soil causes the 
sediment flux to change with downslope distance. As the 
rate at which both rainfall detachment and entrainment 

processes act is controlled by the strength of the original 
soil, this case where H < 1 may be termed "source limiting" 
or, in the situation assumed here where entrainment is the 
only process, "entrainment limiting." This concept is very 
similar to that of" detachment limiting" proposed by Foster 
and Meyer [1975] for the situation when the strength of the 
original soil controls the rate of change of sediment flux. A 
difference is that the "source limit," and in particular the 
"entrainment limit" derived here, is explicitly described as 
for the situation when the mass of the deposited layer is 
constant and the shielding by that layer is less than unity. 

Therefore, at the source limit, the value of the shielding 
fraction, H has a direct impact on the rate at which the 
processes of entrainment and rainfall detachment act. The 
concept of a deposited layer is not used by Foster and Meyer 
[1975]. 

Substituting from (1) for d i and (5) for r ri into (10), taking 
OMdi/Ot = 0, summing over all I size classes, and recogniz. 
ing that c = E/•=• c i and E/; 1 Mdi/Mdt '- 1, leads to the 
following expression for the shielding (H) of the deposited 
layer: 

I 

cgO[(cr- p)lcr] • viii 
i-1 

H = F(g- g0) ' (11) 
Equation (11) followed from the assumption of equality 
between the rate of deposition to form the deposited layer 
and reentrainment from it. This same assumed equality of 
rates at dynamic equilibrium allows (7) to be simplified to 

dc i dq 
q •xx + ci •xx = re' (12) 

Note that the rate of gravity processes is assumed zero in 
this entrainment-limiting case, which describes the lower 
limit for sediment concentration. 

Using the boundary condition that the sediment concen- 
tration, c, is zero at the threshold of entrainment (when II = 
g0), then the solution to (12) with (3) for r i and (11) for H is 

A•u m-• [ (2m- 1) (2m- 1)(2m-2) c= Y 1- + .... mYu (mYu) 2 

(m - 1) (m - 1)(m - 2) Ao 1 + 
uY mYu (mYu) 2 

m- lemY(uo- u) + Aomu 

1 (m - 1)(m - 2) - (2m - 1)(2m - 2) ' 'ru0 + (m ru0) 2 
(m - 1)(m- 2)(m - 3) - (2m - 1)(2m - 2)(2m- 3) 

where 

u=q 

(mYuo) 3 

q glm l'IO 1/rn l'lO = qo = • 

._. 

I 

i=1 

JcrQK 1/m 

Fp9S 

QJ 

g0F 

A0= Qj 

(13) 
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In (13), the power series are infinite and typically rapidly 
converging when m is a noninteger, and finite when m is an 
integer. 

The Transport-Limiting Case (H = 1) 

We now consider the other equilibrium-limiting situation 
when the mass of the deposited layer is still constant, but the 
shielding is complete, so that H = 1. Complete coverage of 
the bed by the deposited layer may be produced in a rill, for 
example by action of the gravity process rate, as in the case 
of rill bank collapse. As before, it is assumed that water 
depth is sufficient for rainfall impact to be a negligibly small 
contributor to sediment concentration. Thus, sediment con- 
centration is determined by the rates of reentrainment, 
gravity processes and deposition. Since the original soil 
matrix is completely shielded, the strength of that matrix 
cannot affect the sediment concentration achieved. This 
would be expected to be a maximum because the deposited 
layer is assumed to offer no resistance to its reentrainment, 
work being done only in lifting this sediment against its 
immersed weight. It will be shown below that the equilib- 
rium sediment concentration achieved in this case involves a 
summation based on the settling velocity characteristics of 
the eroded sediment. 

This case appears to correspond approximately to the 
"transport-limiting" case of Foster and Meyer [1975]. These 
authors used this term to describe a situation where they 
considered the sediment concentration to be limited by the 
ability of the flow to carry a sediment load. Foster and 
Meyer [1975] make no specific reference to sediment depo- 
sition, nor to the settling velocity characteristic of eroded 
sediment in the bed load transport equation adapted by them 
to describe the sediment flux in t. his transport-limiting situ- 
ation. Although the conceptual descriptions and analytic 
expressions of this situation are not identical to the "trans- 
port limit" of Foster and Meyer [ 1975], that term is still used 
here to describe the equilibrium case of H = 1, because of 
the apparent similarities. 

Substituting OMdi/Ot --- 0 and H = 1 into (10) with rri 
given by (5) and d i by (1) with c i = c/I and then summing 
over all I size ranges yields directly an expression for c: 

F[tr/(tr- p)](fl- 12 0) 
c = . (14) 

t 

•7D • viii 
i--1 

Since H = 1, r i = 0 for this case, and also since r r• = d i is 
assumed, the fight-hand side of (7) is equal to the rate of 
gravity processes. Neglecting the time derivative on the 
left-hand side of (7) because of the assumed dynamic equi- 
librium, then d(qci)/dx and so d(qc)/dx would be ascribed 
to gravity processes in this case. It follows from (14), (2), (8) 
and (9) that, at the transport limit, neglecting II 0, 

cl(qc) 

i=1 

Fp[rr/(rr- p)]S(2- l/m) 
I 

• vi/I 
i--! 

ß K 1/mQ 2 - I/m X 1 - 1/rn (15) 

Thus, the rate of gravity processes at the transport limit has 
been derived and shown to increase at a rate proportional to 
x •-l/m. Clearly, gravity processes are discontinuous in 
nature. Thus, the transport limit must be considered an 
unstable limit sustained only by gravity process contribu- 
tions of sediment. In the absence of this rate of gravity 
processes, the sediment concentration will then approach 
the source-limiting concentration given by (13). 

DISCUSSION 

Equations (13) and (14) are respectively expressions for 
the sediment concentration in a flow across a cohesive soil 

surface when either the cohesive strength of the original 
source soil, or the ability of the flow to reentrain sediment in 
the presence of deposition, is limiting. Both the cohesive 
nature of the original soil and the settling velocity (or size) 
distribution of this soil play a role in this description. The 
division of the processes into those affected and those not 
affected by the cohesive strength of the soil, and specific 
representation of the deposited layer, provide the basis of 
this model of erosion phenomena. 

Equation (14), the expression for sediment concentration 
at the transport limit, uses the soil parameters, the density of 
the sediment, rr, and the depositability of the original soil, 
E i•=• v i/l, which may be measured using the techniques 
described by Hairsine and McTainsh [1986] or Lovel! and 
Rose [1988]. Required hydraulic parameters are stream 
power, 11, and flow depth, D, which can be obtained by field 
measurements or a compatible predictive model of overland 
flow. Model parameters which require field evaluation are 
the threshold of entrainment, l• 0 and the fraction' of the 
stream power used by either entrainment or reentrainment, 
F. Equation (13), the expression for sediment concentration 
at the source limit, requires the additional parameter the 
specific energy of entrainment, J, to be determined by fitting 
with field or rainfall simulator data. Proffitt [1988] found the 
parameters F and J to be consistent across a range of 
hydraulic conditions for a cohesive soil. 

At equilibrium, when the mass of the deposited layer is 
steady, it follows from (10) that the rates of reentrainment 
and deposition are equal, and so 

a ir ic e = tl( rr - p) D Mat (16) 
Now, at equilibrium, c/I = ci, where c is the total sediment 
concentration. Therefore, 

HFrr (II- 11o) Mae 
vic/t = , .... (17) 

t7( rr - p) D Mar 

Since vi and Mdi/Mdt are the only class-selective terms in 
(17) at equilibrium, Mdi/Mdt is proportional to vi. Also, 
since by definition •E[= • Mdi/Mdt = 1, by summing across 
the classes it follows that 

Mdi/Mdt = v i 7;J i 
li-- 1 

(18) 

Typical cohesive aggregated soils have a E[=l vii! of the 
order of 0.05 m s -• [Proffitt et al., 1991] and fine sediment 
has sediment velocities of the order of 10 -5 m s -t. Thus, 
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from (17), the equilibrium solutions presented in this theory 
are consistent with the observation that the deposited layer 
is dominated by coarse sediment, containing negligible 
amounts of fine sediment. This prediction is consistent with 
the measurements of Nouh [1990] who studied self-armoring 
of an eroding multisized sand bed. 

The expression for the entrainment limit (equation (13)) 
may be simplified for the special case when the depth 
discharge exponent m = 2 and the threshold of entrainment, 
D• 0, is taken as zero. In this case, (13) becomes 

C 
FpS(KQ) 1/2rr/(o' - p)x 1/2 

! 

•'• vz/I 
i=1 

3 3 3 
(19) 

where 

J(KQ) 1/20'/(0' -- ,O) 
! 

Z Vi/Igx 1/2 
i=1 

It can be seen from (!9) that for a soil of very low cohesive 
strength (i.e., J has a small value), the sediment concentra- 
tion at the entrainment limit approaches the concentration at 
the transport limit given by (14). In this case, the change in 
sediment flux with respect to distance downslope is equal to 
the rate of entrainment acting over a small area since (1 - 
H) must also be small. Thus it now has been shown that 
sediment concentration at the transport limit can be ap- 
proached in two ways: firstly, for a cohesive soil, by gravity 
processes acting at a rate given by (15), and secondly, by the 
specific energy of entrainment of a noncohesive soil ap- 
proaching zero. 

The outcomes of the theory presented above are now 
compared with the sediment transport equation of Yang 
[ 1973], which has been used in erosion models such as that of 
Moore and Burch [1986] and the European soil erosion 
model [Morgan et al., 1989]. For cohesionless beds, it is 
appropriate to compare Yang's equation with (14), the 
expression for sediment concentration at the transport limit. 
Consider flow down a slope of sediment with a single 
sediment settling velocity (denoted by v). From (14), sedi- 
ment concentration would then be 

c 
With the flow uniformly distributed across a plane, stream 
power may be expressed as 

f• = pgSDV (21) 

where V is the mean flow velocity. Substituting for f• from 
(21) in (20) gives 

c = FO _ pgDv' (22) 
Yang [1973] expressed the sediment concentration at trans- 
port capacity (or for transport-limiting situations) as 

3.5 
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[ ... 

r i /• ? .--' 
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Fig. 3. Comparison of the slope length factor (LS) predictions 
of the model at the transport limit (TL) and source limit (SL) with 
those of the universal soil loss equation [Wischmeier and Smith, 
1978]. 

VS - VScr) !ogc=X+ Ylog -- , (23) 

where X and Y are constants which are explicitly defined by 
the sediment size and kinematic viscosity of the water. The 
subscript cr refers to the critical value of VS at which 
entrainment begins. Equations (22) and (23) are of the same 
mathematical form, with the role of unit stream power (l/S) 
and the settling velocity (v) being identical in both equa- 
tions. The similarities between (22) and (23) suggest there is 
experimental support from the literature for the form of 
theory derived above when this is applied to the transport- 
limiting case for single-sized, noncohesive sediment. 

The adequacy of the approach presented in dealing with a 
range of sediment sizes remains untested against the large 
body of available streambed data. However, in modeling the 
erosion and deposition of soils, which have a wide range of 
both particle sizes and densities, this approach appears to be 
a conceptual improvement upon the use of a median size and 
its associated settling velocity commonly adopted in the 
streambed literature. Moore and Burch [1986] suggest that 
the transport of detached sediment is dominated by a 
"framework population" representing the saltating particles 
which are dominantly active. The term E[=• viii in this 
paper- is strongly influenced by this saltating fraction of 
detached sediment. 

The influence of slope length and slope steepness upon the 
rates of erosion is central to soil erosion prediction and 
associated soil'conservation strategies. The very extensive 
data base summarized in the universal soil loss equation 
(USLE) [Wischmeier and Smith, 1978] contains the largest 
body of slope length and slope steepness data available. 
Figure 3 compares the LS factor as predicted by Wischmeier 
and Smith [ 1978] with that of the theory presented above, for 
a range of slopes and •1ope lengths typical of agricultural 
fields. The parameters required for the theory were taken as 
F = 0.245, J = 30.5 J kg -1 and X;[=• vi = 0.048 m s -1 
from Hairsine [1988], who evaluated these parameters for a 
bare cultivated vertisol from the Darling Downs of Australia. 
For the three slope lengths considered, the range of slope 
length factors defined by the source and transport limits 
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shows good agreement with those found by Wischmeier and 
Smith [1978]. For the slope length of 10 m, the transport limit 
predictions closely follow the USLE relationship. For such 
slope lengths, the processes of rainfall detachment and 
rainfall redetachment are likely to make a significant contri- 
bution resulting in the sediment concentration's approaching 
the transport limit. 

Paper 2 considers the effect of rill formation on the above 
theory, and compares theory with experimental data. 

CONCLUSIONS 

The development of a new model of erosion of cohesive 
soils has been described. This model has included a specific 
description of the role of cohesion, a capability to deal with 
sediment with a range of sizes and thus settling velocities, 
and an explicit representation of the layer formed by depo- 
sition. By delineating between the processes of entrainment, 
which acts upon the original cohesive soil, and reentrain- 
ment, which acts upon the deposited layer, a physical 
description. of the erosion of cohesive soils has been pro- 
vided. When cohesion plays no role in limiting the transport 
of sediment, the derived expression for sediment concentra- 
tion has been shown to have similarities to the sediment 

transport equation of Yang [1973]. Finally, the model was 
shown to have good agreement with the slope length term 
used in the universal soil loss equation. 
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